Knockdown of the partner protein OsNAR2.1 for high-affinity nitrate transport represses lateral root formation in a nitrate-dependent manner

نویسندگان

  • Shuangjie Huang
  • Si Chen
  • Zhihao Liang
  • Chenming Zhang
  • Ming Yan
  • Jingguang Chen
  • Guohua Xu
  • Xiaorong Fan
  • Yali Zhang
چکیده

The morphological plasticity of root systems is critical for plant survival, and understanding the mechanisms underlying root adaptation to nitrogen (N) fluctuation is critical for sustainable agriculture; however, the molecular mechanism of N-dependent root growth in rice remains unclear. This study aimed to identify the role of the complementary high-affinity NO3(-) transport protein OsNAR2.1 in NO3(-)-regulated rice root growth. Comparisons with wild-type (WT) plants showed that knockdown of OsNAR2.1 inhibited lateral root (LR) formation under low NO3(-) concentrations, but not under low NH4(+) concentrations. (15)N-labelling NO3(-) supplies (provided at concentrations of 0-10 mM) demonstrated that (i) defects in LR formation in mutants subjected to low external NO3(-) concentrations resulted from impaired NO3(-) uptake, and (ii) the mutants had significantly fewer LRs than the WT plants when root N contents were similar between genotypes. LR formation in osnar2.1 mutants was less sensitive to localised NO3(-) supply than LR formation in WT plants, suggesting that OsNAR2.1 may be involved in a NO3(-)-signalling pathway that controls LR formation. Knockdown of OsNAR2.1 inhibited LR formation by decreasing auxin transport from shoots to roots. Thus, OsNAR2.1 probably functions in both NO3(-) uptake and NO3(-)-signalling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status.

The high affinity nitrate transport system (HATS) plays an important role in rice nitrogen acquisition because, even under flooded anaerobic cultivation when NH(4)(+) dominates, significant nitrification occurs on the root surface. In the rice genome, four NRT2 and two NAR2 genes encoding HATS components have been identified. One gene OsNRT2.3 was mRNA spliced into OsNRT2.3a and OsNRT2.3b and O...

متن کامل

Identification and functional assay of the interaction motifs in the partner protein OsNAR2.1 of the two-component system for high-affinity nitrate transport

A partner protein, NAR2, is essential for high-affinity nitrate transport of the NRT2 protein in plants. However, the NAR2 motifs that interact with NRT2s for their plasma membrane (PM) localization and nitrate transporter activity have not been functionally characterized. In this study, OsNAR2.1 mutations with different carbon (C)-terminal deletions and nine different point mutations in the co...

متن کامل

Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx.

Root nitrate uptake is well known to adjust to the plant's nitrogen demand for growth. Long-distance transport and/or root storage pools are thought to provide negative feedback signals regulating root uptake. We have characterized a vascular specific nitrate transporter belonging to the high-affinity Nitrate Transporter2 (NRT2) family, OsNRT2.3a, in rice (Oryza sativa ssp. japonica 'Nipponbare...

متن کامل

The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues.

Lateral root initiation is strongly repressed in Arabidopsis by the combination of high external sucrose and low external nitrate. A previously isolated mutant, lin1, can overcome this repression. Here, we show that lin1 carries a missense mutation in the NRT2.1 gene. Several allelic mutants, including one in which the NRT2.1 gene is completely deleted, show similar phenotypes to lin1 and fail ...

متن کامل

Functional assessment of the Medicago truncatula NIP/LATD protein demonstrates that it is a high-affinity nitrate transporter.

The Medicago truncatula NIP/LATD (for Numerous Infections and Polyphenolics/Lateral root-organ Defective) gene encodes a protein found in a clade of nitrate transporters within the large NRT1(PTR) family that also encodes transporters of dipeptides and tripeptides, dicarboxylates, auxin, and abscisic acid. Of the NRT1(PTR) members known to transport nitrate, most are low-affinity transporters. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015